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We derive a cell-centered 3-D diffusion differencing scheme for unstructured hex-
ahedral meshes using the local support-operators method. Our method is said to
be local because it yields a sparse matrix representation for the diffusion equation,
whereas the traditional support-operators method yields a dense matrix represen-
tation. The diffusion discretization scheme that we have developed offers several
advantages relative to existing schemes. Most importantly, it offers second-order
accuracy on reasonably well-behaved nonsmooth meshes, rigorously treats material
discontinuities, and has a symmetric positive-definite coefficient matrix. The order of
accuracy is demonstrated computationally rather than theoretically. Rigorous treat-
ment of material discontinuities implies that the normal component of the flux is
continuous across such discontinuities while the parallel components may be either
continuous or discontinuous in accordance with the exact solution to the problem be-
ing considered. The only disadvantage of the method is that it has both cell-centered
and face-centered scalar unknowns as opposed to just cell-center scalar unknowns.
Computational examples are given which demonstrate the accuracy and cost of the
new scheme. c© 2001 Academic Press
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1. INTRODUCTION

The purpose of this paper is to present a local support-operators diffusion discretization
for unstructured 3-D hexahedral meshes. We use the standard finite-element definition for
hexahedra [1]. The method that we present is a generalization of a similar scheme for 2-D
r − z quadrilateral meshes that was developed by Morel, Roberts, and Shashkov [2]. Our
focus is the discretization of the diffusion operator rather than any particular type of diffusion
equation. For demonstration purposes, we choose to solve a linear diffusion equation of the
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form

−E∇ · D E∇φ = Q, (1)

whereφ denotes a scalar function that we refer to as the intensity,D denotes the diffusion
coefficient, andQ denotes the source or driving function. It is sometimes useful to express
Eq. (1) in terms of a vector function,EF , that we refer to as the flux:

EF = −D E∇φ. (2)

We have taken the terms “intensity” and “flux” from the radiative transfer literature [3], but
we have not explicitly considered the radiative diffusion equation because the subject of
this paper relates only to the discretization of the diffusion operator. Our discretization can
be used in any type of diffusion calculation, e.g., time-dependent, steady-state, linear, or
nonlinear.

We define a cell-centered diffusion discretization scheme as one that numerically pre-
serves the integral of Eq. (1) over each spatial cell. In particular, substituting from Eq. (2)
into Eq. (1) and integrating that equation over a cell volume, we obtain∮

∂V

EF · En d A=
∫

V
Q dV, (3)

where∂V denotes the cell surface,En denotes the outward-directed unit surface normal, and
V denotes the cell volume. Note that we used the divergence theorem to convert the first
integral in Eq. (3) from a volume integral to a surface integral. In physical terms, Eq. (3)
generally represents a statement of particle or energy conservation over the cell. Thus, we
can simply state that cell-centered schemes (as we define them) are conservative over each
mesh cell.

If one considers only nonorthogonal meshes with material discontinuities, existing vertex-
centered diffusion discretizations are generally more advanced than cell-centered discretiza-
tions. This is primarily so because of the enormous success of Galerkin finite-element
methods [1] and variants of those methods. Nonetheless, there are applications for which
cell-centered schemes appear to yield superior accuracy relative to vertex-centered schemes.
For instance, when coupling radiation diffusion calculations with cell-centered hydrody-
namics calculations, a cell-centered diffusion scheme is highly desirable because it avoids
certain difficulties associated with mapping between vertex-centered and cell-centered ma-
terial temperatures [4].

The discretization scheme that we have developed is cell-centered, but it has intensity
unknowns at both cell centers and face centers. It can be applied on unstructured hexahe-
dral meshes. It yields second-order accurate solutions for the intensities on both smooth and
nonsmooth meshes even when material discontinuities are present, and it generates a sparse
symmetric positive-definite coefficient matrix. Second-order convergence has been demon-
strated computationally on nonsmooth meshes, but it has not been theoretically proven.

The literature relating to cell-centered diffusion discretization schemes for nonorthogonal
hexahedra is not particularly extensive. One of the earliest relevant papers appeared about
10 years ago. In particular, Rose developed a cell-centered hexahedral-mesh discretization
scheme for the Laplacian operator [5]. The diffusion operator that we consider degenerates to
the Laplacian operator when the diffusion coefficient isidentically one. Unlike our scheme,
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which has only the normal component of the current on each cell face, Rose’s scheme has
three components of the flux on each cell. Furthermore, the flux is continuous across each
cell face in Rose’s scheme, whereas only the normal component of the flux is continuous in
our scheme. A central aspect of Rose’s method is the preservation of an integral expression
that is referred to as an energy principle. Our method is actually based upon the preservation
of an integral identity. The energy principle used by Rose is not the same as the integral
identity that we use, but they are related. In particular, the principle used by Rose can be
derived from the diffusion equation together with the integral identity that we use. Rose
presented a proof that his hexahedral-mesh method converges with second-order accuracy,
but he provided computational results only for a 1− D version of his method. Arbogast
et al. [6] have recently developed a cell-centered expanded mixed finite-element method
for solving the tensor diffusion equation on general meshes (including hexahedral meshes).
Their method has only cell-center intensity unknowns if both the mesh and the diffusion
tensor are smooth, but additional face-center intensities are required wherever the mesh or
the diffusion tensor is nonsmooth. The coefficient matrix generated by their method is always
symmetric positive definite (SPD). The method of Arbogastet al.actually shares some of
the best properties of the standard mixed finite-element method and the hybrid mixed finite-
element method. Standard mixed finite-element diffusion methods have only cell-center
intenstities, but this is achieved at the cost of solving a computationally expensive saddle-
point linear system. The saddle-point system can be avoided by using the hybrid mixed
finite-element approach, which generates a symmetric positive-definite coefficient matrix at
the expense of additional face-center unknowns. The method of Arbogastet al.yields an SPD
coefficient matrix similar to the mixed hybrid method but it can sometimes require far fewer
unknowns. Although they proved several convergence theorems for their hexahedral-mesh
method, they had to assume certain mesh smoothness properties. Furthermore, Arbogast
et al.provided computational results only for a 2-D version of their method.

Our local support-operators method is similar to hybrid mixed finite-element methods
in that it is cell-centered, it has both cell-center and cell-face intensities, and it produces
a coefficient matrix that is symmetric positive-definite. However, our scheme is funda-
mentally a finite-volume technique since basis functions never appear in our formalism.
Nonetheless, a strong connection does exist between our method and hybrid mixed finite-
element methods. This connection arises from the fact that the integral identity that is the
basis of the support-operators method is in fact a weak form of Eq. (2). Hybrid mixed
finite-element methods satisfy a weak form of Eq. (2) on specific finite-dimensional func-
tion spaces, whereas the support-operators solution satisfies a weak form of Eq. (2) in a
purely discrete sense. The global support-operators method has recently been reformu-
lated to include the use of vector basis functions on general quadrilateral meshes [7]. The
basis-function version of the method recovers the finite-difference version when exact in-
tegration is replaced with certain approximate quadratures. The basis-function formulation
appears to be about three times more accurate than the finite-difference formulation but
both formulations exhibit the same order of convergence. Because of the complexity of the
2-D vector basis functions, the authors of [7] conclude that the improvement in accuracy
does not justify the added complexity of the basis-function support-operators method. We
feel that our local support-operators method for general hexahedral meshes is much sim-
pler than hybrid mixed finite-element methods precisely because the vector basis functions
for hexahedral meshes are extremely complicated [6]. More importantly, our local support-
operators method converges on nonsmooth hexahedral meshes, but we have not been able to
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identify any hybrid mixed finite-element methods that have been shown to converage on such
meshes.

To summarize, the following combination of characteristics appear to be unique to our
support-operators diffusion discretization scheme:

• It is a cell-centered discretization for unstructured hexahedral meshes.
• It has been computationally demonstrated that the scheme gives second-order con-

vergence of the intensity on both smooth and nonsmooth meshes both with and without
material discontinuities.
• It generates a sparse SPD coefficient matrix.
• It is equivalent to the standard 7-point cell-center diffusion discretization scheme [8]

when the mesh is orthogonal.

We stress that some of the latest hybrid finite-element methods for hexahedral meshes
require a certain degree of mesh smoothness for convergence [6], whereas our method
converges on nonsmooth grids. Thus, our method clearly represents a valuable alternative
to hybrid mixed finite-element methods.

The remainder of this paper is organized as follows. We first explain the central theme
of our local support-operators method, and apply it to a nonorthogonal hexahedral mesh in
Cartesian geometry. We next describe an approximate version of our scheme that we use as
a preconditioner in conjunction with a conjugate-gradient solution technique [9]. Finally,
computational results are given, followed by a summary and recommendations for future
work.

2. THE SUPPORT-OPERATORS METHOD

In this section we describe the support-operators method. It is convenient at this point
to define a flux operator given by−D E∇. The diffusion operator of interest is given by the
product of the divergence operator and the flux operator:−E∇ · D E∇. The support-operators
method is based upon the following three facts:

• Given appropriately defined scalar and vector inner products, the divergence and flux
operators are adjoint to one another.
• The adjoint of an operator varies with the definition of its associated inner products,

but is unique for fixed inner products.
• The product of an operator and its adjoint is a self-adjoint positive-definite operator.

The mathematical details relating to these facts are given in [10]. As explained in [10], the
adjoint relationship between the flux and divergence operators is embodied in the integral
identity ∮

∂V
φ EH · En d A−

∫
V

D−1 EH · D E∇φ dV =
∫

V
φ E∇ · EH dV, (4)

whereφ is an arbitrary scalar function,EH is an arbitrary vector function,Vdenotes a volume,
∂V denotes its surface, andEn denotes the outward-directed unit normal associated with that
surface. This identity can be derived from the differential identity [11],

E∇ · (φ EH) = φ E∇ · EH + EH · E∇φ, (5)
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and the divergence theorem [11],∫
V

E∇ · EH dV =
∫
∂V

EH · En d A. (6)

Our support-operators method can be conceptually described in the simplest terms as
follows:

1. Define discrete scalar and vector spaces to be used in a discretization of Eq. (4).
2. Fully discretize all but the flux operator in Eq. (4) over a single arbitrary cell. The flux

operator is left in the general form of a discrete vector as defined in Step 1.
3. Solve for the discrete flux operator (i.e., for its vector components) on a single arbitrary

cell by requiring that the discrete version of Eq. (4) hold for all elements of the vector space
defined in Step 1.

4. Combine the flux operator with the balance equation to obtain a discretization of
Eq. (1) on a single mesh cell. This provides an equation for each cell-center intensity.

5. Connect adjacent mesh cells in such a way as to ensure that Eq. (4) is satisfied over the
whole grid. This simply amounts to enforcing continuity of intensity and continuity of the
normal flux component at the cell interfaces. Because each cell face on the mesh interior is
shared by two cells, there are initially two distinct intensities at the center of each of these
faces. The continuity of intensity condition reduces each such pair of intensities to a single
intensity. The continuity of flux condition provides an equation for each of the face-center
intensities on the mesh interior.

6. Use the analytic boundary conditions to obtain an expression for a “boundary normal
flux component” for each cell face on the mesh boundary. Equate this “boundary normal
flux component” to the normal flux component obtained via the flux operator on each
boundary cell face. This provides an equation for each face-center intensity on the outer
mesh boundary, and completes the specification of the diffusion matrix.

To make this process concrete, we next generate the diffusion matrix for a hexahedral
mesh in Cartesian geometry. To simplify the presentation, we assume a logically rectangular
mesh. However, we stress that our discretization scheme can be used with unstructured
meshes as well. The assumption of a logically rectangular mesh merely simplifies our
notation and mesh indexing. Our first step is to define that indexing. For reasons explained
later, both global and local indices are used. Let us first consider the global indices. The
cell centers carry integral global indices, e.g., (i, j, k); cell vertices carry half-integral global
indices, e.g.,(i + 1

2, j + 1
2, k+ 1

2); and face centers carry mixed global indices composed
of both integral and half-integral indices, e.g.,(i + 1

2, j, k). The global indices for four of
the vertices associated with cell (i, j, k) are illustrated in Fig. 1.

Local indices allow us to uniquely define certain quantities that are associated with a
vertex or face centeranda cell. For instance, the local indices for the six faces associated
with each cell are given by L, R, B, T, D, and U, which denote Left, Right, Bottom, Top,
Down, and Up respectively. This local face indexing is illustrated for cell (i, j, k) in Fig. 2
and Fig. 3 together with a mapping between the local indices and the corresponding global
indices. Note that the indexi increases when moving from Left to Right, the indexj increases
when moving from Bottom to Top, and the indexk increases when moving from the Down
to Up. The local indices for the vertices follow directly from the face indices in that each
vertex is uniquely shared by three faces of the cell. Thus, the vertex shared by the Right,
Top, and Up faces is denoted by the index RTU. This vertex is illustrated in Fig. 4.
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FIG. 1. Global indices for four vertices associated with cell (i, j, k).

The vector and matrix notation used from this point forward in this paper is as follows.
Each vector is denoted by an uppercase symbol and the components of that vector are
denoted by the corresponding lowercase symbol. An arrow is placed over the uppercase
symbol if the vector is physical, while a chevron is placed above the uppercase symbol if
the vector is algebraic. Each matrix is denoted by a boldface uppercase symbol and the
elements of that matrix are denoted by the corresponding lowercase symbol.

FIG. 2. Local and global indices for three of six face centers associated with cell (i, j, k).
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FIG. 3. Local and global indices for three of six face centers associated with cell (i, j, k).

The intensities (scalars) are defined to exist at both cell center:φC
i, j,k, and on the face

centers:φL
i, j,k, φ

R
i, j,k, φ

B
i, j,k, φ

T
i, j,k, φ

D
i, j,k, φ

U
i, j,k. As previously noted, the use of local indices

implies that a quantity is uniquely associated with a single cell. For instance, unless it is
otherwise stated, one should assume thatφR

i, j,k 6= φL
i+1, j,k.

Vectors are defined in terms of face-area components located at the face centers:f L
i, j,k,

f R
i, j,k, f B

i, j,k, f T
i, j,k, f D

i, j,k, f U
i, j,k, where f L

i, j,k denotes the dot product ofEF with the outward-
directed area vector located at the center of the left face of celli, j, k. The other face-
area components are defined analogously. The area vector is defined as the integral of the

FIG. 4. Vertex shared by the Right, Top, and Up faces having local index RTU.
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outward-directed unit normal vector over the face, i.e.,

EA =
∮
En d A, (7)

whereEn is a unit vector that is normal to the faces at each point on the face. The average
outward-directed unit normal vector for the face is defined as follows:

〈En〉 =
EA
‖ EA‖ , (8)

where‖ EA‖ denotes the magnitude (standard Euclidian norm) ofEA. Equation (8) can be
used to convert face-area flux components to face-normal components if desired, e.g.,

EF · 〈En〉 = EF ·
EA
‖ EA‖ ,

= f

‖ EA‖ . (9)

Note that‖ EA‖ is equal to the face area only when the face is flat. Interestingly, the true
face areas never arise in our discretization scheme. Since it takes three components to
define a full vector, the full vectors are considered to be located at the cell vertices:
EFLBD

i, j,k,
EFRBD

i, j,k,
EFLTD

i, j,k,
EFRTD

i, j,k,
EFLBU

i, j,k,
EFRBU

i, j,k,
EFLTU

i, j,k,
EFRTU

i, j,k. Each vertex vector is construct-
ed using the face-area components and area vectors associated with the three faces that
share that vertex. For instance,

EFLBD
i, j,k =

f L( EAB × EAD)

EAL · ( EAB × EAD)
+ f B( EAD × EAL)

EAL · ( EAD × EAL)
+ f D( EAL × EAB)

EAD · ( EAL × EAB)
. (10)

It is convenient for our purposes to define an algebraic vector,F̂ , consisting of the three
face-area components associated with the physical vector,EF , e.g.,

F̂LBD =
(

f L
i, j,k, f B

i, j,k, f D
i, j,k

)t
, (11)

where a superscript “t” denotes “transpose.” The three face-area components associated
with the Right-Top-Up vertex are illustrated in Fig. 5. The other vertex vectors are defined
in analogy with Eqs. (10) and (11).

The next step in our support-operators method is to discretize Eq. (4) over a single
arbitrary cell in a particular manner. Specifically, we explicitly discretize all but the flux
operator, which is expressed in an implicit form consistent with our choice of discrete
vector unknowns. We assume indices ofi, j, k for the arbitrary cell, but suppress these
indices whenever possible in the discrete approximation to Eq. (4) that follows. We first
discretize the surface integral∮

∂V
φ EH · En d A≈ φLhL + φRhR+ φBhB + φT hT + φDhD + φU hU . (12)
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FIG. 5. Three face-center face-area components defining the flux vector at vertex RTU.

Next, we approximate the flux volumetric integral∫
V
−D−1 EH · D E∇φ dV

≈ D−1( EHLBD · EFLBD)VLBD+ D−1( EHRBD · EFRBD)VRBD+ D−1( EHLTD · EFLTD)VLTD

+ D−1( EHRTD · EFRTD)VRTD+ D−1( EHLBU · EFLBU)VLBU+ D−1( EHRBU · EFRBU)VRBD

+ D−1( EHLTU · EFLTU)VLTU+ D−1( EHRTU · EFRTU)VRTU, (13)

where EFLBD denotes−D E∇φ at the Left-Bottom-Down vertex, andVLBD denotes the vol-
umetric weight associated with the Left-Bottom-Down vertex. The remaining flux vectors
and vertex volumetric weights are analogously indexed. The choice of weights is one of the
many free parameters in the support-operators method. For reasons explained in Section 3,
we define our weights in terms of triple products. Specifically, each vertex weight is initially
given by one-eighth the triple product associated with the vertex. For instance, using the
local vertex indexing shown in Fig. 2, the volumetric weight for the Left-Bottom-Down
vertex is given by

VLBD = 1

8
ER1,2× ER1,3 · ER1,4, (14)

where ERi, j denotes the vector from vertexi to vertex j . These triple product weights do
not sum to the total volume of the hexahedron unless the hexahedron is a parallelepiped.
Thus, we normalize the triple product weights so that they sum to the correct total volume.
In particular, each triple-product weight is multiplied by the ratioVt/Vs, whereVt is the
total volume of the hexahedron andVs is the sum of the triple product weights.

One can evaluate the dot products in Eq. (13) using Eq. (10), but we find it better for our
purposes to evaluate them with the algebraic face-area flux vectors defined by Eq. (11). This
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is achieved by first transforming the face-area vectors to Cartesian vectors and then taking
the dot product. Rather than explicitly defining the matrix that transforms face-area vectors
to Cartesian vectors, we explicitly define its inverse. The desired transformation matrix can
then be obtained by either algebraic or numerical inversion. For instance, let us consider the
Left-Bottom-Down vertex vectors. We denote the matrix that transforms face-area vectors
to Cartesian vectors asALBD. Its inverse is the matrix that transforms Cartesian vectors to
face-area vectors,

ĤLBD = [ALBD]−1 EHLBD, (15)

whereĤ denotes a Left-Bottom-Down face-area flux vector,

Ĥ = (hL , hB, hD)t , (16)

and EH denotes a Left-Bottom-Down Cartesian flux vector,

EH = (hx, hy, hz)t , (17)

and

[ALBD]−1 =


aL

x aL
y aL

z

aB
x aB

y aB
z

aD
x aD

y aD
z

 , (18)

whereaL
x denotes the x-component of the area vector associated with the left face. The

remaining components of the matrix are defined analogously. Transforming the face-area
vector for the Left-Bottom-Down vertex, we obtain

EHLBD · EFLBD = ALBDĤLBD · ALBD F̂LBD,

= ĤLBD · SLBDF̂LBD, (19)

where

SLBD = [ALBD]tALBD. (20)

Following Eq. (20), we now rewrite Eq. (13) in terms of face-area vectors as∫
V
−D−1 EH · D E∇φ dV

≈ D−1(ĤLBD ·SLBDF̂LBD)VLBD+ D−1(ĤRBD ·SRBDF̂RBD)VRBD

+ D−1(ĤLTD ·SLTDF̂LTD)VLTD+ D−1(ĤRTD ·SRTDF̂RTD)VRTD

+ D−1(ĤLBU ·SLBUF̂LBU)VLBU+ D−1(ĤRBU ·SRBUF̂RBU)VRBU

+ D−1(ĤLTU ·SLTUF̂LTU)VLTU+ D−1(ĤRTU ·SLTUF̂RTU)VRTU. (21)
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Although we assume a single diffusion coefficient in each cell in this paper, we note that
our scheme can accommodate a different diffusion coefficient for each vertex. In particular,
Eq. (21) becomes

∫
V
−D−1 EH · D E∇φ dV

≈ DL B D−1
(ĤLBD · SLBDF̂LBD)VLBD+ DRBD−1

(ĤRBD · SRBDF̂RBD)VRBD

+ DLTD−1
(ĤLTD · SLTDF̂LTD)VLTD+ DRTD−1

(ĤRTD · SRTDF̂RTD)VRTD

+ DLBU−1
(ĤLBU · SLBUF̂LBU)VLBU+ DRBU−1

(ĤRBU · SRBUF̂RBU)VRBU

+ DLTU−1
(ĤLTU · SLTUF̂LTU)VLTU+ DRTU−1

(ĤRTU · SLTUF̂RTU)VRTU. (22)

Although we assume a scalar diffusion coefficient in this paper, we note that our scheme can
accommodate a tensor diffusion coefficient. Specifically, with a tensor diffusion coefficient
at each vertex, Eq. (21) becomes

∫
V
−D−1 EH · D E∇φ dV

≈ (ĤLBD ·GLBDF̂LBD)VLBD+ (ĤRBD ·GRBDF̂RBD)VRBD+ (ĤLTD ·GLTDF̂LTD)VLTD

+ (ĤRTD ·GRTDF̂RTD)VRTD+ (ĤLBU ·GLBUF̂LBU)VLBU+ (ĤRBU ·GRBUF̂RBU)VRBU

+ (ĤLTU ·GLTUF̂LTU)VLTU+ (ĤRTU ·GLTUF̂RTU)VRTU, (23)

where

GLBD = [ALBD]t [DLBD]−1ALBD, (24)

andDLBD is the Left-Bottom-Down diffusion tensor in the Cartesian basis. The remaining
G-matrices are defined analogously. The diffusion tensor must be symmetric positive-
definite to ensure that its inverse exists and that the coefficient matrix for our diffusion
scheme is symmetric positive-definite.

Finally, we approximate the divergence volumetric integral

∫
V
φ E∇ · EH dV ≈ φC[hL + hR+ hB + hT + hD + hU ]. (25)

Equations (12), (21), and (25) are certainly not unique, but they are fairly straightforward.
For instance, Eq. (12) represents a face-centered second-order approximation to a surface
integral. Equation (21) represents a vertex-based volumetric integral consisting of a dot-
product contribution from each pair of vertex vectors. Equation (25) is a particularly simple
second-order approximation which gives all of the weight to the cell-center value ofφ while
using a surface-integral formulation forE∇ · EH that is analogous to the surface-integral used
in Eq. (12).

Substituting from Eqs. (12), (21), and (25) into Eq. (4), we obtain the discrete version of
Eq. (4):
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φLhL + φRhR+ φBhB + φT hT + φDhD + φU hU + D−1(ĤLBD · SLBDF̂LBD)VLBD

+D−1(ĤRBD · SRBDF̂RBD)VRBD+ D−1(ĤLTD · SLTDF̂LTD)VLTD

+D−1( EHRTD · SRTDF̂RTD)VRTD+ D−1(ĤLBU · SLBUF̂LBU)VLBU

+D−1(ĤRBU · SRBUF̂RBU)VRBU+ D−1(ĤLTU · SLTUF̂LTU)VLTU

+D−1(ĤRTU · SLTUF̂RTU)VRTU= φC[hL + hR+ hB + hT + hD + hU ]. (26)

Note that Eq. (26) defines the discrete inner products, discussed in [10], that are associated
with the adjoint relationship between the divergence and gradient operators. We can now
use this relationship to solve for the flux operator components by requiring that the resulting
discretized identity hold forall discreteĤ values. In particular, the equation for the face-
area component ofEF on any given cell face is obtained from Eq. (26) simply by setting the
same face-area component ofEH on that face to unity and setting the remaining face-area
components ofEH on all the other faces to zero. For instance, we obtain the equation for
f L from Eq. (26) by settinghL to unity and all the other face-area components ofEH , i.e.,
hR, hB, hT , hD, hU , to zero as

φL + D−1
(
sLBD

L ,L f L + sLBD
L ,B f B + sLBD

L ,D f D
)
VLBD+ D−1

(
sLTD

L ,L f L + sLTD
L ,T f T + sLTD

L ,D f D
)
VLTD

+ D−1
(
sLBU

L ,L f L + sLBU
L ,B f B + sLBU

L ,U f U
)

VLBU+ D−1
(
sLTU

L ,L f L + sLTU
L ,T f T

+ sLTU
L ,U f U

)
VLTU = φC, (27)

wheresLBD
L ,L denotes the (L, L) element of the matrixSLBD defind by Eq. (20), and the

remainingS-matrix elements are defined analogously.
The equations for the face-area flux components, i.e., Eq. (27) and its analogues for the

Right, Bottom/Top, and Down/Up faces, can be expressed in matrix from as

W−1F̂ = 18̂, (28)

where

F̂ = ( f L , f R, f B, f T , f D, f U )t , (29)

and

18̂ = (φC − φL , φC − φR, φC − φB, φC − φT , φC − φD, φC − φU )t . (30)

To obtain a matrix that gives the face-center components of the flux operator in terms of the
face-center and cell-center intensities, one need simply invert the 6× 6 matrix in Eq. (28):

F̂ =W18̂. (31)

Since it is not practical to perform this inversion algebraically, we perform it numerically.
Thus, we cannot give an explicit expression for the matrixW. Nonetheless, it can be shown
that it is an SPD matrix (see the Appendix). In addition, if we assume an orthogonal mesh,
W becomes diagonal and can be trivially inverted. For instance, under this assumption,
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Eq. (27) becomes

φL + D−1(1y1z)−2 f L1x1y1z

2
= φC, (32)

where we have also assumed that the indicesi, j, k, correspond to the spatial coordinatesx,
y, z, respectively. Solving Eq. (32) forf L , we obtain

f L = −2D

1x
(φL − φC)1y1z, (33)

which is exact for aφ that is linearly dependent uponx.
Having derived Eq. (31), we can construct the discrete equation for the cell-center inten-

sity in every cell. Each such equation represents a discretization of Eq. (3), i.e., a balance
equation for the cell. Furthermore, each balance equation uses a discretization for the di-
vergence of the flux that is identical to that used in Eq. (26). In some sense, this is the
point at which we obtain a diffusion operator by combining our discrete divergence and
flux operators. Specifically, the equation forφC is

f L + f R+ f B + f T + f D + f U = QCV, (34)

whereV denotes the total volume of the cell, the face-area flux components are expressed
in terms of the intensities via Eq. (31), andQC denotes the source or driving function
evaluated at cell-center. Equation (34) contains all of the intensities in cell (i, j, k). Thus, it
has a 7-point stencil.

Now that we have defined the equations for the cell-center intensities, we must next define
equations for the face-center intensities. Our local indexing scheme admits two intensities
and two face-area flux components at each face on the mesh interior. In particular, there is
one intensity and one flux component from each of the cells that share a face. For instance,
the cell face with global index(i + 1

2, j, k) is associated with the two intensities,φR
i, j,k and

φL
i+1, j,k, and the two face-area flux components,f R

i, j,k and f L
i+1, j,k. We previously obtained

the flux components in terms of the intensities by forcing Eq. (26), a discrete version of
Eq. (4), to be satisfied on each individual cell for all discrete scalars and vectors. We now
obtain equations for the interior-mesh face-center intensities by requiring that this identity
be satisfied over the entire mesh for all discrete scalars and vectors.

When Eq. (26) is summed over the entire mesh, the two volumetric integrals are naturally
approximated in terms of a sum of contributions from each individual cell. However, a valid
approximation for the surface integral in Eq. (26) will occur if and only if contributions to
the surface integral from each individual cell cancel at all interior faces, thereby resulting in
an approximate integral over the outer surface of the mesh. By inspection of Eq. (26), it can
be seen that this will be achieved by requiring both continuity of the intensity and continuity
of the face-area flux component at each interior cell face. In particular, we require that

φR
i, j,k = φL

i+1, j,k ≡ φi+ 1
2 , j,k

, (35)

φT
i, j,k = φB

i, j+1,k ≡ φi, j+ 1
2 ,k
, (36)

φU
i, j,k = φD

i, j,k+1 ≡ φi, j,k+ 1
2
, (37)
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f R
i, j,k + f L

i+1, j,k = 0, (38)

f T
i, j,k + f B

i, j+1,k = 0, (39)

f U
i, j,k + f D

i, j,k+1 = 0, (40)

where the indices in Eqs. (35) through (40) take on all values associated with interior cell
faces, and the flux components in Eqs. (38) through (40) are expressed in terms of intensities
via Eq. (31). One would expect that the continuity of the face-area flux components expressed
by Eqs. (38) through (40) would require that thedifferenceof the components be zero rather
than thesumof the components. However, one must remember that each of the components
is defined with respect to an area vector that is equal in magnitude but opposite in direction
to that of the other component.

Equations (35) through (37) establish that there is only one intensity unknown associated
with each interior-mesh cell face. Thus, as shown in Eqs. (35) through (37), each such
intensity can be uniquely referred to using a global mesh index. The equations for these
intensities are given by Eqs. (38) through (40). For instance, Eq. (38) is the equation for
φi+ 1

2 , j,k
. In general, Eq. (38) contains only and all of the intensities in cells (i, j, k) and

(i + 1, j, k). Thus, it has a 13-point stencil. The only intensity shared by these two cells is
φi+ 1

2 , j,k
. Thus, in a certain sense it can be said thatφi+ 1

2 , j,k
is “chosen” to obtain continuity

of the face-area flux components on cell-face (i + 1
2, j, k). The properties of Eqs. (39) and

(40) are completely analogous to those of Eq. (38).
If the mesh is orthogonal, Eqs. (38) through (40) simplify to such an extent that they

relate each interior-mesh face-center intensity to the two cell-center intensities adjacent to
it. This enables the face-center intensities to be explicitly eliminated, resulting in the stan-
dard 7-point cell-centered diffusion discretization that is both SPD and monotone (having
strictly positive diagonal elements and strictly nonpositive off-diagonal elements.) This is
completely analogous to the 2-D case discussed in detail in [2]. However, if the mesh is
nonorthogonal, the face-center intensities cannot be eliminated, and Eqs. (38) through (40)
must be included in the diffusion matrix. In this case, these equations must be reversed in
sign to obtain a symmetric diffusion matrix,

− f R
i, j,k − f L

i+1, j,k = 0, (41)

− f T
i, j,k − f B

i, j+1,k = 0, (42)

− f U
i, j,k − f D

i, j,k+1 = 0. (43)

Having defined the equations for the cell-center and interior-mesh face-center intensities,
we need only define the equations for the face-center intensities on the outer mesh boundary
to complete the specification of our diffusion discretization scheme. Cell faces on the outer
boundary are associated with only one cell. Thus, there is only one face-center intensity
and one face-area flux component associated with each such face. The equation for each
boundary intensity is very similar to that for each interior-mesh face-center intensity in
that it expresses a continuity of the face-normal flux component. The only difference in
the boundary equations is that the analytic boundary condition for the diffusion equation
is used to define a “ghost-cell” face-normal flux component that must be equated to the
standard face-normal flux component defined by Eq. (31). A ghost cell is a nonexistent
mesh cell that represents a continuation of the mesh across the outer mesh boundary. For
instance, assuming that the left face of cell 1,j, k is on the outer boundary of the mesh and
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its remaining faces are on the interior of the mesh, the ghost cell “adjacent” to cell 1,j, k
carries the indices 0,j, k.

The analytic diffusion boundary condition of interest to us is the so-called “extrapolated”
boundary condition. This condition is of the mixed or Robin type and can be expressed as

φ + de E∇φ · En = φe, (44)

wherede is called the extrapolation distance,φe is called the extrapolated intensity (a
specified function), andEn denotes an outward-directed unit normal vector. Equation (44)
is satisfied at each point on the outer surface of the problem domain. Of course, the values
of the parameters de andφe may change as a function of position. One obtains a vacuum
boundary condition whenφe = 0, a source condition whenφe is nonzero, and a reflective
(Neumann) condition whenφe = φ. The extrapolated boundary condition is said to be a
Marshak condition wheneverde = 2D.

We begin the derivation of the ghost-cell face-area flux component by substituting from
Eq. (2) into Eq. (44)

φ − de

D
EFg · En = φe, (45)

where EF is the flux vector associated with a ghost cell. Next we recognize that the outward-
directed unit normal vector for a ghost-cell must be identical to an inward-directed unit
normal vector on the outer surface of the problem domain. Thus,

Eng = −En, (46)

where Eng denotes a ghost-cell outward-directed unit normal vector. Substituting from
Eq. (46) into Eq. (45), we obtain

φ + de

D
EFg · Eng = φe, (47)

Next, we solve Eq. (47) for the outward-directed flux component associated with a ghost
cell:

EFg · Eng = D

de
(φe− φ). (48)

Now let us assume that the left face of cell 1,j, k is on the outer boundary of the mesh with
its remaining faces on the mesh interior. The ghost cell whose right face is identical to the
left face of cell 1,j, k carries the indices 0,j, k. The intensity on the left face of cell (1,j,
k) is φ 1

2 , j,k
, and the face-area flux component on that face isf L

1, j,k. Evaluating Eq. (48) at
the center of face (12, j, k) and multiplying the resulting expression by the magnitude of the
outward-directed area-vector on that face associated with cell 1,j, k, we obtain the desired
expression for the ghost-cell face-area flux component,

f R
0, j,k = −

D1, j,k

de
0, j,k

(
φ 1

2 , j,k
− φe

0, j,k

)‖ EAL
1, j,k‖, (49)
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where the extrapolated intensity and the extrapolation distance are assumed to carry the
ghost-cell index.

We next obtain the equation forφ 1
2 , j,k

by requiring that the Right and Left face-area flux
components for cells (0,j, k) and (1,j, k), respectively, sum to zero:

− f R
0, j,k − f L

1, j,k = 0. (50)

Note that Eq. (50) is identical to Eq. (41) with the latter equation evaluated ati = 0. Thus,
Eqs. (41) through (43) provideall face-center intensity equations with the caveat that when
an intensity is on the outer mesh boundary, the associated ghost-cell flux component must be
defined via the boundary condition rather than Eq. (31). Note that Eq. (50) couples all of the
intensities within a cell and therefore has a 7-point stencil. This completes the specification
of our diffusion discretization scheme.

To summarize,

• The face-area flux components for each cell are expressed in terms of the intensities
within that cell via Eq. (31).
• The discrete equation for each cell-centered intensity is given in Eq. (34).
• The equations for the interior-mesh face-centered intensities are given in Eqs. (41)

through (43).
• The equation for a face-center intensity on the outer mesh boundary is given by

Eqs. (49) and (50) when the boundary face is the Left face of a cell. Analogous equa-
tions for the other five cases are easily derived using Eqs. (41) through (43) and Eq. (49).

We have already shown that our diffusion matrix is sparse. It is also symmetric positive-
definite. We demonstrate this latter property in the Appendix. If the mesh is orthogonal,
theW-matrices, defined by Eq. (31), become diagonal, and the face-center intensities can
be locally eliminated from the cell-center/face-center system. This results in a pure cell-
center diffusion discretization that is identical to the standard 7-point cell-center diffusion
discretization scheme [8]. In Section 4 we describe a preconditioner that exploits the fact
that the face-center intensities can be locally eliminated when theW-matrices are diagonal.

3. CHOICES IN THE SUPPORT-OPERATORS METHOD

In this section we discuss some of the choices that we have made in formulating our
support-operators method. As previously noted, the general principle upon which the
support-operators method is based can be applied with a variety of locations and repre-
sentations for the intensity and flux unknowns. There is a great deal of freedom in the
choice of numerical parameters used in evaluating the volumetric and surface integrals.
However, the accuracy of a scheme is highly dependent upon the choices that are made.

For instance, rather than define the fluxes in terms of face-normal components on each
face, one can simply place an independent set of Cartesian flux components at each vertex.
This yields a total of 24 flux unknowns for a hexahedron rather than the six unknowns
in our scheme. However, schemes constructed in this way generally do not converge on
nonsmooth meshes. The use of face-normal components appears to be necessary to achieve
convergence on such meshes.

On a general hexahedron, there is even some choice in defining the face-normal com-
ponents. For instance, the surface normal varies across a hexahedral face. Thus, one must



354 MOREL, HALL, AND SHASHKOV

FIG. 6. Sub-hexahedron associated with vertex.

choose a particular representation for the “average face normal.” We have chosen to define
this quantity in terms of the area vector, but other choices are clearly possible.

The vertex volumetric weights used in the flux volumetric integral can also be chosen in a
variety of ways. We have investigated alternatives to the normalized triple-product weights.
In particular, we considered unnormalized triple-product weights, sub-hexahedron weights,
and simple one-eighth weights. Sub-hexahedron weights are defined by the volume of an
associated sub-hexahedron. The sub-hexahedra are obtained by using four straight lines to
connect each face center with the four edge centers adjacent to it, and by using six straight
lines to connect the cell center with the six face centers. A sub-hexahedron is illustrated in
Fig. 6. Although it may not be obvious, each other face of each sub-hexahedron coincides
with a face of the hexahedron. Thus, the volumes of the sub-hexahedra always sum to the
total hexahedron volume. This would seem to be the most natural choice for the vertex
volumetric weights. The one-eighth weights are identical for a given hexahedron and are
obtained by dividing the total volume of the hexahedron by one-eighth.

Computational testing indicates that the sub-hexagon and one-eighth weights are de-
cidedly inferior to the triple-product and normalized triple-product weights. In particular,
the triple-product and normalized triple-product weights both yield a second-order-accurate
diffusion discretization, whereas the sub-hexagon and one-eighth weights yield a first-order
accurate diffusion discretization. Although they both give second-order accuracy, the nor-
malized triple-product weights seem to be slightly more accurate than the triple product
weights. This is why we use the normalized triple-product weights.

4. SOLUTION OF THE EQUATIONS

We use a preconditioned conjugate-gradient method [9] to solve our discretized diffusion
equations. The preconditioner is completely analogous to that used for the 2-D local support-
operators scheme [2]. It is obtained simply by setting the off-diagonal elements of the
S-matrices, defined by Eq. (20), to zero. This causes theW-matrices, defined by Eq. (31),
to be diagonal and effects a huge simplification in the algebraic structure of the intensity
equations. In particular, this makes it possible to locally eliminate the face-center intensities
from the cell-center/face-center system, resulting in a pure cell-center diffusion discretiza-
tion that is both SPD and monotone. For instance, if we set the off-diagonal elements of the
S-matrices to zero, Eq. (27) and its analogue forf R yield

f L
i+1, j,k = −

2Di+1, j,k

1L
i+1, j,k

(
φi+ 1

2 , j,k
− φi+1, j,k

)
, (51)
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and

f R
i, j,k = −

2Di, j,k

1R
i, j,k

(
φi+ 1

2 , j,k
− φi, j,k

)
, (52)

respectively, where

1L
i+1, j,k = 2

[
sLBD

L ,L VLBD+ sLTD
L ,L VLTD+ sLBU

L ,L VLBU+ sLTU
L ,L VLTU

]
i+1, j,k

, (53)

and

1R
i, j,k = 2

[
sRBD

R,R VRBD+ sRTD
R,R VRTD+ sRBU

R,R VRBU+ sRTU
R,R VRTU

]
i, j,k

. (54)

Substituting from Eqs. (51) and (52), into Eq. (41), we get the equation forφi+ 1
2 , j,k

:

2Di, j,k
(
φi+ 1

2 , j,k
− φi, j,k

)
1R

i, j,k

+
2Di+1, j,k

(
φi+ 1

2 , j,k
− φi+1, j,k

)
1L

i+1, j,k

= 0. (55)

Solving Eq. (55) forφi+ 1
2 , j,k

, we get

φi+ 1
2 , j,k
=
(
φi, j,k

Di, j,k

1R
i, j,k

+ φi+1, j,k
Di+1, j,k

1L
i+1, j,k

)/(
Di, j,k

1R
i, j,k

+ Di+1, j,k

1L
i+1, j,k

)
. (56)

Thus, we see from Eq. (56) that neglecting the off-diagonal elements of theS-matrices
makes each interior-mesh face-center intensity a weighted-average of the two cell-center
intensities adjacent to it. Substituting from Eq. (56) into Eqs. (51) and (52) we find that the
face-area fluxes on the right and left faces of cells (i, j, k) and (i + 1, j, k), respectively,
can be expressed in terms of a difference between the cell-center intensities in those two
cells,

f R
i, j,k = − f L

i+1, j,k = −
Di+ 1

2 , j,k

1i+ 1
2 , j,k

(φi+1, j,k − φi, j,k), (57)

where

Di+ 1
2 , j,k
=
[(

1R
i, j,k

Di, j,k
+ 1

L
i+1, j,k

Di+1, j,k

)/(
1R

i, j,k +1L
i+1, j,k

)]−1

, (58)

and

1i+ 1
2 , j,k
= 1R

i, j,k +1L
i+1, j,k

2
. (59)

Thus, each interior-mesh face-area flux can be expressed in terms of a difference between
the two adjacent cell-center intensities. Substituting from Eq. (57) (and its analogues for the
other face-area fluxes) into the balance equation, Eq. (34), we obtain a 7-point cell-center
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diffusion discretization for each cell on the mesh interior. In particular, the balance equation
for cell (i, j, k) (and the equation forφi, j,k) is

−
Di+ 1

2 , j,k

1i+ 1
2 , j,k

(φi+1, j,k − φi, j,k)+
Di− 1

2 , j,k

1i− 1
2 , j,k

(φi, j,k − φi−1, j,k)−
Di, j+ 1

2 ,k

1i, j+ 1
2 ,k
(φi, j+1,k − φi, j,k)

+
Di, j− 1

2 ,k

1i, j− 1
2 ,k
(φi, j,k − φi, j−1,k)−

Di, j,k+ 1
2

1i, j,k+ 1
2

(φi, j,k+1− φi, j,k)

+
Di, j,k− 1

2

1i, j,k− 1
2

(φi, j,k − φi, j,k−1) = Qi, j,kVi, j,k. (60)

To obtain the analogue of Eq. (57) for a cell face on the outer mesh boundary, we again
consider a cell (1, j, k), whose left face is on the boundary with its other faces in the mesh
interior. Substituting from Eqs. (49) and (51) into Eq. (50), we obtain the equation forφ 1

2 , j,k
,

2D1, j,k

1R
0, j,k

(
φ 1

2 , j,k
− φe

0, j,k

)+ 2D1, j,k

1L
1, j,k

(
φ 1

2 , j,k
− φ1, j,k

) = 0, (61)

where

1R
0, j,k =

2de
0, j,k

‖ EAL
1, j,k‖

. (62)

Solving Eq. (61) forφ 1
2 , j,k

we get

φ 1
2 , j,k
=
(
φe

0, j,k
D1, j,k

1R
0, j,k

+ φ1, j,k
D1, j,k

1L
1, j,k

)/(
D1, j,k

1R
0, j,k

+ D1, j,k

1L
1, j,k

)
. (63)

Substituting from Eq. (63) into Eqs. (49) and (51), respectively, we obtain the desired
expression for the face-area flux component on a boundary face,

f R
0, j,k = − f L

1, j,k = −
D1, j,k

1 1
2 , j,k

(
φ 1

2 , j,k
− φe

0, j,k

)
, (64)

where1 1
2 , j,k

is given by Eq. (59) evaluated withi = 0 and Eq. (62). This completes the
derivation of the approximate cell-center diffusion scheme used to precondition the full
cell-center/face-center scheme.

To summarize:

• The preconditioning system is obtained simply by setting the off-diagonal elements of
theS-matrices to zero.
• Having diagonalS-matrices enables the face-center intensities to be locally eliminated,

resulting in a pure 7-point cell-center diffusion discretization on the mesh interior that is
given by Eq. (60). Equations (57) and (64) together with their analogs for the Bottom/Top
and Down/Up face-area fluxes are used in conjunction with the balance equation to obtain
the analogue of Eq. (60) for boundary cells.
• Once the reduced system has been solved for the cell-center intensities, the face-

center intensities can be directly calculated. In particular, Eq. (56) and its analogues for
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the Bottom/Top and Down/Up faces are used to calculate the face-center intensities on the
mesh interior, while Eq. (63) and its analogues for the Bottom/Top and Down/Up faces are
used to calculate the face-center intensities on the outer mesh boundary.

Since theS-matrices are rigorously diagonal when the mesh is orthogonal, it follows that
the preconditioning system is identical to the full cell-center/face-center system whenever
the mesh is orthogonal. Thus, our preconditioner can be expected to be very effective if the
mesh is not too skewed. Our preconditioning system costs much less to solve than the full
system because the coefficient matrix of the reduced cell-center preconditioning system
has roughly one-fourth as many rows and one-sixth as many elements as the full cell-
center/face-center coefficient matrix. Computational results presented in the next section
confirm this expectation.

When the 7-point system is used for preconditioning purposes, an inhomogeneous source
term (actually a residual) will generally appear in both the cell-center and face-center
intensity equations. We did not include such a source in our derivation of the face-center
intensity equations because they do not appear in standard calculations. One must remember
to include these sourcesbeforethe face-center intensities are locally eliminated to obtain
the 7-point cell-center system. This matter is extensively discussed for the 2-D case in [2].

It can be shown that the cell-center/face-center preconditioning system and the reduced
cell-center system are both SPD and monotone. For instance, the demonstration of the SPD
property given in the Appendix for the full cell-center/face-center system also applies to
the preconditioner. Monotonicity is fairly easy to demonstrate once it is recognized that the
“1-coefficients” defined by Eqs. (53), (54), (59), and (62) are always positive. This follows
from the structure of theS-matrices shown in Eq. (20).

5. COMPUTATIONAL RESULTS

In this section we perform four sets of calculations. The first, second, and third sets
demonstrate convergence properties of our method on both well-behaved nonsmooth grids
and ill-behaved highly skewed nonsmooth grids. The fourth set of calculations demonstrates
the effectiveness of our preconditioner as a function of mesh skewness.

There are two types of meshes used in all four sets of calculations: randomized and
Kershaw-squared. Every mesh geometrically models a unit cube, and the outer surface of
each mesh conforms exactly to the outer surface of that cube.

Each randomized mesh is generated from an orthogonal mesh composed of uniform
cubic cells having a characteristic length,lc. In particular, each orthogonal-mesh vertex is
randomly and uniformly relocated within a sphere of radiusr0, wherer0 = 0.25 lc, that is
centered about the vertex. These randomized meshes are both nonsmooth and skewed, but
these properties are approximately constant independent of the mesh size. These meshes are
intended to be representative of nonorthogonal meshes that are nonsmooth and skewed but
relatively well-behaved. Any scheme that performs well on such meshes should certainly
be expected to perform well on smooth meshes. The exterior of the randomized meshes are
orthogonal because only the interior mesh points are randomized. The interior of a cubic
randomized mesh is illustrated in Fig. 7.

The Kershaw-squared meshes are a 3-D variation on the 2-D Kershaw meshes that first
appeared in [12]. The exteriors of a 10× 10× 10 Kershaw-squared mesh and a 20× 20× 20
Kershaw-squared mesh are illustrated in Figs. 8 and 9, respectively. The interior of a
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FIG. 7. Interior view of a portion of a 10× 10× 10 random mesh.

10× 10× 10 Kershaw-squared mesh illustrated in Fig. 10. By comparing Figs. 8 and 9, it
can be seen that the Kershaw-squared meshes become increasingly nonsmooth and skewed
as the mesh size (the number of mesh cells) is increased. Thus, they are representative
of severely distorted and highly ill-behaved meshes, and they provide a severe test for
hexahedral-mesh discretization schemes.

We have performed test calculations using 3-D meshes for problems with either a 1-D
dependence or a full 3-D dependence. We make use of 1-D problems simply because
analytic benchmarks are far easier to obtain in 1-D and have often been used in the past to
test multidimensional diffusion discretizations [2, 4, 10, 12]. It is important to recognize
that the 3-D accuracy of our discretization is in fact being tested in problems with a 1-D
dependence because the randomized and Kershaw-squared meshes do not reflect the 1-D
symmetry of the solution.

We have computationally compared our support-operators method with another diffu-
sion discretization method, which we call the MH method [13]. This method represents a
generalization of the 2-D MDHW method [14] to 3-D unstructured hexahedral meshes. The
MH method is very similar to our support-operators method. It has the same set of discrete
unknowns, and the same discretization for the balance equation. The MH method differs

FIG. 8. External view of a 10× 10× 10 Kershaw-squared mesh.
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FIG. 9. External view of a 20× 20× 20 Kershaw-squared mesh.

from our method only in the computation of the fluxes from the intensities. The main advan-
tage of the MH scheme relative to our support-operators scheme is that it exactly preserves
linear homogeneous solutions. This is a direct consequence of the fact that the MH flux
expression is exact for a linear intensity dependence. Another slight advantage is that the
MH face-center intensity equations have an 11-point stencil rather than the 13-point stencil
of our method. The main disadvantage of the MH method relative to our method is that it
generates a nonsymmetric coefficient matrix.

The problem associated with the first set of calculations can be described as

−D(z)
∂φ

∂z
= Qz2, (65)

for z ∈ [0, 1], where

D(z) =
{

D1, for z ∈ [0, 0.5],

D2, for z ∈ [0.5, 1],
(66)

with a reflective boundary condition atz= 0, a Marshak vacuum boundary condition at
z= 1, and whereD1 = 1

30, D2 = 1
3, andQ = 1. We refer to this problem as the two-material

FIG. 10. Interior view of a portion of a 10× 10× 10 Kershaw-squared mesh.
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problem. This problem has a material discontinuity atz= 0.5. The exact solution to the
two-material problem is

φ =
{

a+ b+ c1z4, for z ∈ [0, 0.5],

a+ c2z4, for z ∈ [0.5, 1.0],
(67)

where

a = Q(1+ 8D2)

12D2
, b = Q(D2− D1)

192D1D2
, c1 = − Q

12D1
, c2 = − Q

12D2
. (68)

This problem is solved in 3-D on a unit cube having the vacuum boundary condition on one
side of the cube together with reflecting conditions on the remaining five sides.

We have performed a set of calculations for the two-material problem using both our
support-operators method and the MH method with grids of the following sizes: 4× 4×
4, 8× 8× 8, 16× 16× 16, 32× 32× 32, 45× 46× 46, and 54× 54× 54. The material
discontinuity was only approximately represented on these meshes because all vertices on
the mesh interior were randomized. The relativeL2 intensity error was computed for each
calculation. This error is defined as theL2 norm of the difference between the vector of exact
cell-center intensities and the vector of computed cell-center intensities divided by theL2

norm of the vector of exact cell-center intensities, i.e.‖φ̂exact− φ̂computed‖2/‖φ̂exact‖2. The
errors are plotted as a function of average cell length in Fig. 11 for our support-operators
method together with a linear fit to the logarithm of the error as a function of the logarithm of
the average cell length. The slope of this linear fit is 1.98. Perfect second-order convergence
corresponds to a slope of 2.0. Thus, our support-operators diffusion scheme converges with
second-order accuracy for the two-material problem on randomized meshes. The errors
for the MH scheme are given in Fig. 12 together with a linear fit. The slope of the fit is

FIG. 11. Convergence data and least-squares linear fit for the support-operators method and the two-material
problem.
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FIG. 12. Convergence data and least-squares linear fit for the MH method and the two-material problem.

1.96. Thus, the MH method also converges with second-order accuracy for the two-material
problem on randomized meshes.

In order to determine the sensitivity of the support-operators method to large jumps in
the diffusion coefficient, we performed an additional set of calcultions for this problem
with D1 = 1

3× 106 rather thanD1 = 1
30. The errors for the support-operators scheme are

given in Fig. 13 together with a linear fit. The slope of the fit is 1.96. Thus, second-order
convergence is maintained even with a large jump in the diffusion coefficient. It can be seen
by comparing Figs. 11 and 13 that the errors are larger with a larger jump in the diffusion

FIG. 13. Convergence data and least-squares linear fit for the support-operators method and the two-material
problem with a large coefficient jump.
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FIG. 14. Convergence data and least-squares linear fit for the MH method and the two-material problem with
a large coefficient jump.

coefficient. The errors for the MH scheme are given in Fig. 14 together with a linear fit. The
slope of the fit is 1.96. Thus, the MH method also maintains second-order accuracy with
a large coefficient jump. A comparison of Figs. 12 and 14 shows a similar increase in the
error with a larger jump in the diffusion coefficient.

The problem associated with the third set of calculations has full 3-D dependence and
can be described as

−E∇ · D E∇φ = Q, (69)

for Er ∈ [0, 1]× [0, 1]× [0, 1], with Marshak boundary conditions on every face having the
extrapolated intensities

φe(0, y, z) = φe(1, y, z) = Q

6D
[y(1− y)+ z(1− z)], (70)

φe(x, 0, z) = φe(x, 1, z) = Q

6D
[x(1− x)+ z(1− z)], (71)

φe(x, y, 0) = φe(x, y, 1) = Q

6D
[x(1− x)+ y(1− y)], (72)

whereD = 1
30 and Q = 1. We refer to this problem as the 3-D problem. The solution to

the 3-D problem is

φ = Q

3
+ Q

6D
[x(1− x)+ y(1− y)+ z(1− z)]. (73)

We have performed a set of calculations using both the support-operators and MH methods
for the 3-D problem with both randomized and Kershaw-squared meshes of the following
sizes: 4× 4× 4, 8× 8× 8, 16× 16× 16, 32× 32× 32, 45× 45× 45, and 54× 54× 54.



SUPPORT-OPERATORS DIFFUSION DISCRETIZATION 363

FIG. 15. Convergence data and least-squares linear fit for the support-operators method and the 3-D problem
on random meshes.

The relativeL2 intensity error was computed for each calculation. The errors are plotted
for the support-operators method on randomized meshes in Fig. 15 together with a linear
fit to the data. The slope of the fit is 1.97. Thus, our support-operators method converges
with second-order accuracy for this problem. The errors are plotted for the MH method on
randomized meshes in Fig. 16 together with a linear fit to the data. The slope of the fit is
2.0. Thus, the MH scheme also converges with second-order accuracy for this problem.

The errors for the 3-D problem are given for both the support-operators method and the
MH method on Kershaw-squared meshes in Table I. There is too much noise in the data

FIG. 16. Convergence data and least-squares linear fit for the MH method and the 3-D problem on random
meshes.
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TABLE I

Convergence of the Support-Operators and MH Methods for the 3-D Problem

on Kershaw-Squared Meshes

Mesh Scheme Error Slopea

4× 4× 4 SO 5.61× 10−2 —
8× 8× 8 SO 1.85× 10−2 1.60

16× 16× 16 SO 7.05× 10−3 1.39
32× 32× 16 SO 1.99× 10−3 1.82
45× 45× 45 SO 1.10× 10−3 1.74
54× 54× 54 SO 8.56× 10−4 1.38
4× 4× 4 MH 2.56× 10−2 —
8× 8× 8 MH 3.39× 10−2 −0.4

16× 16× 16 MH 9.64× 10−3 1.81
32× 32× 16 MH 1.56× 10−3 2.63
45× 45× 45 MH 7.96× 10−4 1.97
54× 54× 54 MH 6.20× 10−4 1.37

a This column contains the slope of a two-point linear fit calculated using only the data for the mesh
assigned the slope value and the data for the next-smallest mesh. For instance, the slope given for the
16× 16× 16 mesh was calculated using the data from the calculations for the 16× 16× 16 mesh
and the 8× 8× 8 mesh.

to do a reliable linear fit for either scheme. It is clear from the data in Table I that both
the support-operators and MH schemes are converging at a rate faster than first-order, but
slower than second-order. Thus, the convergence of both schemes is degraded on Kershaw-
squared meshes relative to the convergence obtained on randomized meshes. This is not
surprising since the Kershaw-squared meshes are extremely skewed and grow increasingly
skewed as the mesh is refined, whereas the randomized meshes have a relatively fixed level
of skewing.

The problem associated with the fourth set of calculations can be described as

−D
∂φ

∂z
= Qz2, (74)

for z ∈ [0, 1], with Marshak vacuum boundary conditions atz= 0 andz= 1, and where
D = 1

30, andQ = 1. We refer to this problem as the homogeneous problem. The homoge-
neous problem is solved in 3-D on a unit cube by having the vacuum boundary conditions
on two opposing sides of the cube with reflecting conditions on the remaining four sides.
We have performed calculations for this problem using both random and Kershaw-squared
meshes in conjunction with two different solution techniques. The first is to apply row
and column scaling to the coefficient matrix and then to solve the resulting system using
the conjugate-gradient method in conjunction with symmetric successive overrelaxation
(SSOR) for preconditioning. We refer to this as the one-level solution technique. The sec-
ond is to apply row and column scaling to the coefficient matrix and then solve the resulting
system using the conjugate-gradient method in conjunction with the low-order 7-point
cell-center diffusion scheme for preconditioning. We refer to this as the two-level solution
technique. The low-order equations are solved by first applying row and column scaling
to the low-order coefficient matrix and then using the conjugate-gradient method in con-
junction with SSOR preconditioning. Note that the low-order system is solved once per
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TABLE II

Comparison of One-Level and Two-Level Solution Techniques

FS Max LO CPU time
Technique Mesh type iterations iterations (sec)

One-Level Random 97 — 143.24
Two-Level Random 7 32 61.53
One-Level Kershaw2 175 — 247.17
Two-Level Kershaw2 46 42 352.91

full-system conjugate-gradient iteration. The total conjugate-gradient iterations required
for the full system, the maximum iterations required for the low-order system, and the total
CPU time are given for each calculation in Table II. It can be seen from Table II that the
two-level solution technique takes 14 times fewer full-system iterations than the one-level
solution technique on the random mesh, but it takes only about 3.5 times fewer full-system
iterations on the Kershaw-squared mesh. This is expected since the low-order scheme be-
comes increasingly inaccurate relative to the full scheme as the mesh becomes increasingly
skewed. Note that the two-level scheme is faster than the one-level scheme on the random
mesh, but it is slower than the one-level scheme on the Kershaw-squared mesh. The de-
crease in CPU times for the two-level scheme will be very dependent upon the method used
to solve the low-order system. For instance, rather than solve the low-order system to a
high level of precision using a Krylov method, one might simply perform a fixed number
of multigrid V-cycles. This would greatly reduce the cost of the preconditioning step and
thereby reduce the total CPU time as well. Such a strategy was employed with great benefit
in [2]. It is important to realize that the structure of the low-order cell-center system on
structured meshes is compatible with standard multigrid methods such as Dendy’s method
[15], whereas the full system has a structure that is incompatible with standard methods.
Thus, the low-order preconditioning approach enables highly efficient solution techniques
to be used in an indirect manner when they cannot be directly applied to the full system.

6. SUMMARY AND FUTURE WORK

We have developed a cell-centered support-operators diffusion discretization for unstruc-
tured hexahedral meshes with spatially-discontinuous diffusion coefficients that produces
a sparse symmetric positive-definite coefficient matrix and yields second-order conver-
gence on nonsmooth randomized meshes. We believe that second-order convergence on
nonsmooth randomized meshes implies second-order convergence on any type of “well-
behaved” nonsmooth meshes, but without a rigorous mathematical proof of convergence,
“well-behaved” must remain a subjective concept. Our scheme properly treats material
discontinuities in that the normal component of the flux is continuous across such disconti-
nuities and the transverse component may be discontinuous. The main disadvantage of our
method is the need for face-center intensities in addition to cell-center intensities. This dis-
advantage is mitigated by the use of a low-order diffusion discretization as a preconditioner
that is symmetric positive-definite and monotone, and has only cell-center intensities in
the coefficient matrix. Our support-operators discretization is very similar to hybrid mixed
finite-element diffusion discretizations. However, our approach does not require the use of
basis functions. Most importantly, current hybrid mixed finite-element methods appear to
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require a certain degree of mesh smoothness to be convergent. For these reasons, we feel that
our method represents a valuable and unique alternative to existing diffusion discretization
schemes for nonorthogonal hexahedral meshes.

There are several possibilities for improving our method. One could certainly reduce the
size of the coefficient matrix by locally eliminating the cell-center unknowns. However, this
elimination must be done computationally since the matrix elements for our method have
to be obtained computationally. Our method would probably best benefit from an improved
preconditioner for highly skewed meshes. There are several candidate schemes that we
intend to investigate in the future.

APPENDIX

The purpose of this appendix is to demonstrate that the coefficient matrix for our support-
operators method is symmetric positive-definite (SPD). This is achieved in the following
manner. First, we demonstrate that theW matrix is SPD. Next, we show that the coefficient
matrix for a single-cell problem with reflective boundary conditions is symmetric positive-
semidefinite (SPS) with a one-dimensional null space consisting of any set of spatially
constant intensities. At this point, the demonstration becomes perfectly analogous to that
given in [2] for the 2-D case. We conclude the 3-D demonstration by giving a brief description
of the final steps. The full details of these steps are given in [2].

The following mathematical preliminaries are discussed in [9]. A matrix,B, is symmetric
if and only if

B = Bt . (A.1)

A matrix, B, is SPD if and only if it is symmetric and it satisfies

X̂tBX̂ > 0, for all vectorsX̂. (A.2)

A matrix, B, is SPS if and only if it is symmetric and it satisfies

X̂tBX̂ ≥ 0, for all vectorsX̂. (A.3)

Thus, every SPD matrix is also SPS. Assume that a square matrix,B, can be expressed in
terms of a square matrix,K , as

B = K tK . (A.4)

Then ifK is not invertible,B is SPS but not SPD, and ifK is invertible,B is SPD.
We begin the overall demonstration by showing that the matrix given in Eq. (31),W, is

SPD. It suffices to show that its inverse, explicitly given by Eq. (27) and its analogues, is
SPD. We begin the construction ofW−1 by considering Eq. (26) and the S-matrices that
appear in it. Each of the S-matrices is a 3× 3 matrix that is uniquely associated with a
vertex, and each of these matrices operates on a 3-vector composed of the face-area flux
components associated with that vertex. We now re-express these 3× 3 matrices as 6× 6
matrices by having them operate on a vector composed of all six face-area flux components
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associated with the cell. For instance, the matrixSLBD operates on the following vertex
face-area flux vector:

F̂LBD = ( f L , f B, f D)t . (A.5)

We want to redefineSLBD so that it operates on the global vector of flux components:

F̂ = ( f L , f R, f B, f T , f D, f U )t . (A.6)

This is easily accomplished via a 3× 6 matrix that we denote asPLBD. In particular, the
6× 6 version ofSLBD is given by

SLBD
6×6 = PL B Dt

SLBDPLBD, (A.7)

where

PLBD
L ,L = PLBD

B,B = PLBD
D,D = 1, (A.8)

and all other elements ofPLBD are zero. The matrixSLBD
6×6 is explicitly given by

PLBDt
SLBDPLBD =



sL ,L 0 sL ,B 0 sL ,D 0

0 0 0 0 0 0
sB,L 0 sB,B 0 sB,D 0

0 0 0 0 0 0
sD,L 0 sD,B 0 sD,D 0

0 0 0 0 0 0


. (A.9)

For the general case, the matrixP is most easily defined with respect to the matrixSusing
numeric indices. To do this we simply number all vector components in the usual sequential
manner, e.g.,

( f L , f B, f D)t → ( f1, f2, f3)
t , (A.10)

and

( f L , f R, f B, f T , f D, f U )t → ( f1, f2, f3, f4, f5, f6)
t . (A.11)

Using this numeric indexing, the matrixP is defined for the general case as follows: If the
i’th component of the local vector̂Fvertexassociated withSvertex is thej’th component of the
global vectorF̂ , then

pi, j = 1, (A.12)

otherwise

pi, j = 0. (A.13)
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It is convenient at this point to assign the vertices with the indices LBD, RBD, LTD, RTD,
LBU, RBU, LTU, RTU, to the respective numeric indices 1, 2, 3, 4, 5, 6, 7, 8. This enables
us to re-express Eq. (26) as

Ĥt8̂+ D−1
8∑

n=1

VnĤtPt
nSnPnF̂ = Ĥt (φC1̂), (A.14)

wheren is the numeric vertex index, and where

1̂ = (1, 1, 1, 1, 1, 1)t , (A.15)

8̂ = (φL , φR, φB, φT , φD, φU )t , (A.16)

Ĥ = (hL , hR, hB, hT , hD, hU )t . (A.17)

Since Eq. (A.14) must hold for all possiblêH, it follows that

8̂+ D−1

[
8∑

n=1

VnPt
nSnPn

]
F̂ = φC1̂. (A.18)

Further manipulating Eq. (A.18), we obtain

D−1

[
8∑

n=1

VnPt
nSnPn

]
F̂ = 18̂, (A.19)

where18̂ is defined by Eq. (30). Comparing Eqs. (28) and (A.19) it follows that

W−1 = D−1

[
8∑

n=1

VnPt
nSnPn

]
. (A.20)

From Eq. (20) it follows that each 3× 3 S-matrix is the product of a matrixA and its
transpose. Substituting from Eq. (20) into Eq. (A.20), we get,

W−1 = D−1

[
8∑

n=1

VnPt
nAt

nAnPn

]
,

= D−1

[
8∑

n=1

Vn(AnPn)
t (AnPn)

]
. (A.21)

Since

• the matrix,(AnPn)
t (AnPn), must be SPS for each value ofn,

• an SPS matrix multiplied by a positive scalar remains SPS,
• the diffusion coefficient will always be positive,
• the vertex volumes will be positive with any reasonably well-formed mesh,
• theA-matrices will be invertible with any well-formed mesh,
• theP-matrices are not invertible,
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it follows from Eq. (A.21) thatMn must be SPS but not SPD for each value ofn, where

Mn = D−1Vn(AnPn)
t (AnPn). (A.22)

Substituting from Eq. (A.22) into Eq. (A.21) we find thatW−1 is a sum of matrices with
each constituent matrix,Mn, being SPS:

W−1 =
8∑

n=1

Mn. (A.23)

It is shown in [2] that if a matrix is a sum of SPS matrices, it is SPS, and its null space is
the intersection of the null spaces of the constituent matrices. From the definitions of the
A-matrices and theP-matrices (see Eqs. (18), (A.12), and (A.13)), it follows that eachM -
matrix has a three-dimensional null space. For instance, the null space ofM1 (corresponding
to the LBD corner) consists of any vector of the form

F̂ = (0, f R, 0, f T , 0, f U )t , (A.24)

where f R, f T , and f U are free to take on any values. There is no one face-area flux
component that is common to the null spaces of all eightM -matrices, so the intersection of
their null spaces is the null set. This implies thatW−1 has an empty null space. Since it is
also SPS, it follows thatW−1 is SPD. Finally, ifW−1 is SPD, thenW must be SPD.

The next step in the demonstration is to construct the discrete diffusion equations for a
single cell with reflective boundary conditions. Let us assume a solution vector,8̂, of the
form given in Eq. (A.16). In order to use numeric indices for the coefficient matrix of the
single-cell system, we number this vector in the usual manner, i.e.,

(φL , φR, φB, φT , φD, φU , φC)t → (φ1, φ2, φ3, φ4, φ5, φ6, φ7)
t . (A.25)

The first six equations for a single cell are the equations for the face-center intensities.
For a reflective boundary condition, these equations simply state that the face-area flux
component on each face is zero. However, in analogy with Eqs. (41) through (43), we
equivalently require that thenegativeof each component be zero. TheW-matrix relates the
face-area flux components to the differences between the cell-center intensity and the face-
center intensities in accordance with Eq. (31). Thus the first six equations can be expressed
in terms of the matrixW as

−W18̂ = 0, (A.26)

where in accordance with Eqs. (30) and (A.25),

18̂ = (φ7− φ1, φ7− φ2, φ7− φ3, φ7− φ4, φ7− φ5, φ7− φ6)
t . (A.27)

Using Eqs. (A.26), and (A.27), one can easily construct the first six rows of the single-cell
coefficient matrix,C, as follows:

ci, j =W i, j , i = 1, 6, j = 1, 6, (A.28)

ci,7 = −
6∑

j=1

W i, j , i = 1, 6. (A.29)
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The seventh and last row ofC corresponds to Eq. (34), the steady-state balance equation.
Using Eqs. (31), (34), and (A.27) through (A.29), we define the last row of the coefficient
matrix:

c7, j = −
6∑

i=1

W i, j , i = 1, 6 (A.30)

c7,7 =
6∑

i=1

6∑
j=1

W i, j . (A.31)

To summarize, the coefficient matrix takes the block form

C =
[

W W r

Wc Wrc

]
, (A.32)

whereWr is a 6× 1 matrix obtained by summing the rows ofW, Wc is a 1× 6 matrix
obtained by summing the columns ofW, andWrc is a 1× 1 matrix obtained by summing all
of the elements ofW. Note thatWc is the transpose ofWr becauseW is symmetric. Thus,
C is symmetric. To prove that it is SPS, we need only show that it is positive-semidefinite.
Toward this end, we note that any vector8̂ can clearly be re-expressed as

8̂ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7)
t = 8̂ f + 8̂c, (A.33)

where

8̂ f = (φ1− φ7, φ2− φ7, φ3− φ7, φ4− φ7, φ5− φ7, φ6− φ7, 0)
t , (A.34)

and

8̂c = (φ7, φ7, φ7, φ7, φ7, φ7, φ7)
t . (A.35)

Taking the inner product of̂8 with C8̂, we get

(8̂ f + 8̂c)
tC(8̂ f + 8̂c) = 8̂t

f C8̂ f + 8̂t
f C8̂c + 8̂t

cC8̂ f + 8̂t
cC8̂c. (A.36)

It is easily verified that

C8̂c = 0̂, for all 8̂c. (A.37)

Substituting from Eq. (A.37) into Eq. (A.36), we get

(8̂ f + 8̂c)
tC(8̂ f + 8̂c) = 8̂t

f C8̂ f + 8̂t
cC8̂ f . (A.38)

Since

8̂t
cC8̂ f = 8̂t

f C
t8̂c = 0, (A.39)
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Eq. (A.38) reduces to

(8̂ f + 8̂c)
tC(8̂ f + 8̂c) = 8̂t

f C8̂ f . (A.40)

Using Eq. (A.32), it is easily shown that

8̂t
f C8̂ f = 8̂t

f 6W8̂ f 6, (A.41)

where

8̂f 6 = (φ1− φ7, φ2− φ7, φ3− φ7, φ4− φ7, φ5− φ7, φ6− φ7)
t . (A.42)

SinceW is SPD, it follows from Eqs. (A.40) through (A.42) that

(8̂ f + 8̂c)
tC(8̂ f + 8̂c) = 0, if 8̂f = 0̂,

> 0, otherwise. (A.43)

Thus,C is positive-semidefinite. Since it is also symmetric,C is SPS. Note from Eq. (A.43)
that the null space ofC is spanned by all vectorŝφc. Following Eq. (A.35), it is clear that
the null space ofC is spanned by all vectors of constant intensity.

The remainder of the demonstration is identical to that given for the 2-D case in [2]. The
final steps can be briefly described as follows:

1. Given a multicell mesh withN cells, theC-matrices for each cell are expanded to
operate on the global vector of intensities for the entire mesh. This step is conceptually
analogous to the expansion of theSLBD matrix given in Eq. (A.9). Since theC-matrices are
SPS, their expansions must be SPS.

2. It is shown that the sum of the expandedC-matrices represents the coefficient matrix
for the entire mesh with reflective conditions on the outer boundary faces. Since the global
coefficient matrix is the sum of SPS matrices, it must be SPS. Furthermore, the null space
of the full coefficient matrix must be equal to the intersection of the null spaces of the
expandedC-matrices.

3. It is shown that the null space of the full coefficient matrix is spanned by all vectors of
constant intensity. This is the correct result because the analytic diffusion operator has a null
space spanned by all constant intensity functions if the reflective condition is imposed on the
entire outer boundary. The analytic diffusion operator becomes invertible if the reflective
condition is replaced with an extrapolated boundary condition on any portion of the outer
boundary surface.

4. Finally, it is shown that if the reflective boundary condition is replaced with an ex-
trapolated condition on any outer-boundary cell face, the expandedC-matrix for the cell
containing the boundary face has a null space that is disjoint from the null spaces of all the
other expandedC-matrices. Thus, the intersection of the null spaces of all the expanded
C-matrices is the null set. Since the global coefficient matrix is the sum of the expanded
C-matrices, and the expandedC-matrices are SPS, it follows that the global coefficient
matrix is SPD.
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